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The problem of direct initiation of detonation, where a powerful ignition source drives
a blast wave into a gaseous combustible mixture to generate a Chapman–Jouguet (CJ)
detonation, is investigated numerically by using a three-step chain-branching chemical
kinetic model. The reaction scheme consists sequentially of a chain-initiation and
a chain-branching step, followed by a temperature-independent chain termination.
The three regimes of direct initiation i.e. subcritical, critical and supercritical, are
numerically simulated for planar, cylindrical and spherical geometries using the
present three-step chemical kinetic model. It is shown that the use of a more detailed
reaction mechanism allows a well-defined value for the critical initiation energy to
be determined. The numerical results demonstrate that detonation instability plays
an important role in the initiation process. The effect of curvature for cylindrical and
spherical geometries has been found to enhance the instability of the detonation wave
and thus influence the initiation process. The results of these simulations are also
used to provide further verification of some existing theories of direct initiation of
detonation. It appears that these theories are satisfactory only for stable detonation
waves and start to break down for highly unstable detonations because they are
based on simple blast wave theory and do not include a parameter to model the
detonation instability. This study suggests that a stability parameter, such as the ratio
between the induction and reaction length, should be considered and a more complex
chemistry should be included in future development of a more rigorous theory for
direct initiation of detonation.

1. Introduction
Direct initiation of detonation, as opposed to the transition from deflagration to

detonation, refers to the ‘instantaneous’ formation of a detonation in the decay of
the strong blast wave ensued from a powerful ignition source. Since the pioneering
work of Zel’dovich, Kogarko & Simonov (1957), significant advances have been made
toward the understanding of the direct initiation phenomenon. Numerous studies
were carried out which attempted to formulate a predictive theory for the critical
initiation energy (see, for example, Lee 1977). In spite of all these efforts, a quantitative
theory capable of predicting the critical initiation energy from first principles based on
thermo-chemical and kinetic rate data of the mixture is still lacking. The weakest part
of most previous theoretical and numerical investigations is the use of an idealized
single-step Arrhenius rate law to model the chemical reaction kinetics. Although
the use of such a model simplifies the analysis and reveals some interesting global
features of the phenomenon, it does not represent effectively the chemical reactions of
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most explosive mixtures. Hence, some results obtained by using a one-step chemistry
model may not even be in qualitative agreement with experimental observations. For
instance, in the numerical study by Mazaheri (1997), it is demonstrated that the use
of a single-step Arrhenius rate law results in difficulty in obtaining a well-defined
value of critical initiation energy. For single-step chemistry, a system without losses
will always react to completion. Hence initiation will always occur after a sufficiently
long time and a critical value of initiation energy no longer exists. This then yields
the non-physical result that a detonation can be initiated via any arbitrary strength
of shock wave if one waits long enough.

Numerous studies have revealed that complexities in the chemistry model are sig-
nificant in the initiation and propagation of the detonation wave, as well as the
detonation structure. For instance, von Neumann (1942), and more recently Sharpe
(1999), Sharpe & Falle (2000) and Dionne (2000) pointed out that pathological detona-
tions, i.e. detonations that can travel at a velocity greater than the Chapman–Jouguet
(CJ) value, are possible when the chemical kinetic mechanism involves a competition
between exothermic and endothermic reactions. Such non-ideal detonation usually
arises due to the effects of chemistry such as the present of an endothermic stage of
the reaction, mole changes during the reaction, multiple reversible reactions, etc. (see
Fickett & Davis 1979).

To study the influence of chemical kinetics, Dold & Kapila (1991) investigated the
difference between shock initiation of detonation based on an asymptotic analysis
for global one-step and three-step chain-branching chemical models. They found that
the development of the detonation behind an initiating shock wave is fundamentally
different when the chemistry is modelled using a radical chain-branching mechanism
from that when using a global one-step model. Their analyses indicated that a
simplified one-step chemical model may not be adequate for the study of detonation
initiation in combustible mixtures, which are typically burned by way of a radical
chain-branching process.

Subsequently, Short & Dold (1996) conducted linear stability studies of a detonation
wave using the same chain-branching reaction model as Dold & Kapila (1991). In
parallel with the linear stability analyses, Short & Quirk (1997) carried out direct
numerical simulations to investigate the nonlinear pulsating detonation instability
driven by the three-step chain-branching reaction. They showed similar mechanisms
for the regular and irregular modes of instability for both the simple one-step
Arrhenius reaction and the three-step chain-branching reaction models. However, they
found that the use of the three-step chain-branching reaction scheme has an advantage
over the standard one-step Arrhenius model because a well-defined detonability limit
can now be obtained. More recently, the dynamics of one-dimensional overdriven
detonations with branched-chain kinetics has been revisited by Sánchez et al. (2001),
providing further analytical developments of the problem.

In view of the different qualitative features obtained from these studies where
a more detailed chemical kinetics is used, it appears of interest to investigate the
direct blast initiation problem by including more detailed chemistry. Theoretical and
numerical investigations of the blast initiation problem have already been carried out
by many researchers, for instance He & Clavin (1994), Mazaheri (1997) and more
recently by Eckett, Quirk & Shepherd (2000), all using a single-step Arrhenius rate law.
Although He (1996) also incorporated detailed kinetics of the H2–O2 system in their
numerical calculations, little attention is given on the influence of the chemical kinetics.
Therefore, the main objective of this paper is to elucidate further the direct initiation
phenomenon and investigate the importance of the chemical kinetic scheme used. The
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present investigation is carried out via numerical simulations. A number of numerical
schemes are nowadays available which are capable of reproducing many aspects of the
highly transient and unstable events during the initiation and propagation of gaseous
detonations (see Bourlioux, Majda & Roytburd 1991). Numerical simulations can
provide more detailed information on the non-steady reacting flow field behind the
detonation, which can be difficult to obtain from experiments. Although a complex
set of chemical kinetic rate equations could in principle be solved simultaneously with
the reactive Euler equations within current computational capabilities, interpretation
of the large amount of detailed information generated by such numerical simulations
becomes a challenging problem. Therefore, it may suffice to use a simplified chemical
kinetics of the three-step reaction mechanism to just more accurately reproduce some
qualitative aspects of the initiation phenomenon. In the present study, the same
three-step chain-branching reaction model as in the work of Short & Quirk (1997) is
used to simulate the direct initiation phenomenon. This model consists of a chain-
initiation and a chain-branching step, followed by a temperature-independent chain
termination. It can represent a generic three-step chemical-kinetic description of a
real chain-branching reaction.

2. Mathematical model
The dynamics of unsteady propagation of a one-dimensional detonation can be

described by the one-dimensional reactive Euler equations, i.e. a set of hyperbolic
partial differential equations in space (in laboratory frame) and time that express
the conservation of mass, momentum and energy. They have the following non-
dimensional form:

∂ρ

∂t
+
∂(ρu)

∂r
+
j

r
(ρu) = 0, (2.1a)

∂(ρu)

∂t
+
∂
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(ρu2 + p) +

j

r
(ρu2) = 0, (2.1b)

∂(ρe)

∂t
+
∂
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j

r
[u(ρe+ p)] = 0, (2.1c)

where ρ, u, p and e denote the fluid density, velocity, pressure and specific total energy,
respectively. The parameter j represents the geometric factor with j = 0, 1, 2 for the
planar, cylindrical and spherical geometries. Assuming a perfect gas with constant
specific heat ratio γ, the specific total energy and the equation of state are given by

e =
p

(γ − 1)ρ
− q + 1

2
u2, (2.2a)

p = ρT , (2.2b)

where q is the local chemical energy release. All the flow variables are non-
dimensionalized with respect to the unburned mixture properties as follows:

ρ =
ρ̃

ρ̃o
, p =
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γp̃o
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γT̃ o

, u =
ũ
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,
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o

with c̃2
o =

γp̃o

ρ̃o
, (2.3)

where we use the tilde to denote dimensional quantities and subscript (o) to denote
quantities ahead of the shock. The variable c̃o is the sound speed of the unburned
mixture. The reference length and time scales will be described later in this section.
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The chemical kinetic model used for the present study is a generalized three-step
chain-branching reaction model and its detailed description can be found in the paper
by Short & Quirk (1997). For completeness, we will just summarize its main features
here. This model involves two temperature-sensitive radical-producing reactions and
a temperature-independent chain-termination reaction. It can be represented by the
following three main stages:

1. Chain initiation: F → Y , kI = exp

(
EI

(
1

TI
− 1

T

))
, (2.4a)

2. Chain branching: F + Y → 2Y , kB = exp

(
EB

(
1

TB
− 1

T

))
, (2.4b)

3. Chain termination: Y → P , kC = 1, (2.4c)

where F , Y and P correspond to the amount of reactant, radical and product,
respectively. The chain-initiation and chain-branching rate constants kI and kB have
an Arrhenius temperature-dependent form e−E/T . The chain-termination reaction is
assumed to be first order, independent of temperature and to have a fixed rate constant
kC . The initiation step has the activation energy EI and the activation energy for the
chain-branching step is EB . The parameters TI and TB denote respectively the chain-
initiation and chain-branching cross-over temperatures. These are the temperature
limits at which the chain-initiation and chain-branching rates become as fast as the
chain-termination rate. In order to represent typical chain-branching reactions, these
parameters should lie within the following limits (Short & Quirk 1997):

TI > Tshock, TB < Tshock, EI � EB. (2.5)

The reference length scale r̃c is chosen such that the chain-termination rate constant
is unity, i.e. kC = 1. The reference time scale t̃c is therefore set to the reference
length scale divided by the sound speed of the reactant (i.e. t̃c = r̃c/c̃o). Denoting the
variables f and y to be the mass fraction of the fuel F and radical Y , the consumption
equations for fuel and radical can be written as

∂(ρf)

∂t
+
∂(ρuf)

∂r
+
j

r
(ρuf) = −ρ(wI + wB), (2.6a)
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+
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r
(ρuy) = ρ(wI + wB − wC), (2.6b)

where

wI = f exp

(
EI

(
1

TI
− 1

T

))
, wB = ρfy exp

(
EB

(
1

TB
− 1

T

))
, wC = y, (2.7)

and the local chemical energy release is given by

q = Q− fQ− y(Q+ Qendo), (2.8)

where Q is the total amount of chemical energy available in the combustible mixture
and Qendo represents the amount of endothermic chemical energy used by the chain-
initiation and chain-branching reactions because energy is required to break the bond
and dissociate the reactant into free radicals. In the present work, Qendo is set to zero
for simplicity without loss of generality. The three-step chemical kinetic model allows
four parameters to be adjusted, namely EI , EB , TI and TB . It should be noted that
it is possible to derive a number of different steady detonation profiles under the
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ordered limits allowed by these parameters (Short, Kapila & Quirk 1999). This model
has an advantage over the standard single-step chemistry model because it allows
the variation of the two important length scales of the reaction process, namely the
induction and reaction zone length. In the present study, values of Q = 8.33, EI = 37.5,
EB = 10, TI = 3Tshock and γ = 1.2 are used throughout for the CJ detonation, unless
specified otherwise. The chain-branching cross-over temperature TB is also used as a
bifurcation parameter.

3. Detonation structure
3.1. Steady-state ZND structure

Before we investigate the dependence of the direct initiation process on the details
of the chemistry model, it is worthwhile to first obtain the steady ZND (Zel’dovich–
von Neumann–Döring) detonation structure using the generalized three-step chemical
kinetic model. The variation of the state variables in the detonation structure can
be obtained via the integration of the three conservation equations together with
the chemical rate law. The non-dimensional steady-state conservation equations for a
coordinate system fixed with respect to the shock front can be written as

M =
u

v
, (3.1a)

1

γ
+M2 = p+

u2

v
= p+Mu, (3.1b)

1

γ − 1
+
M2

2
=

γpv

γ − 1
+
u2

2
− (Q− fQ− yQ), (3.1c)

where M is the Mach number of the CJ detonation wave and v the specific volume (i.e.
1/ρ). The variation in fuel and radical concentrations is determined by the following
equations:

fr = −(wI + wB)/u, yr = (wI + wB − wC)/u, (3.2)

where the subscript r denotes the derivative with respect to the distance r and w
represents the rate of each reaction step as given previously by equations (2.7). The
above system of equations can be integrated using the initial condition of the shocked
state (or von Neumann state). For a given shock Mach number, the von Neumann
state can be obtained from the Rankine–Hugoniot relationship for a normal shock
wave. The integration proceeds until the equilibrium CJ conditions are reached.

Typical pressure and temperature profiles for the ZND structure are illustrated in
figure 1(a, b). Across the shock, the pressure and temperature jump abruptly to the
von Neumann state. During the induction period both the pressure and temperature
remain relatively constant. When energy starts to be released in the reaction zone,
the pressure drops while the temperature increases. At the end of the reaction zone,
the products are at equilibrium and the final state corresponds to values from the CJ
solution, if the unique CJ detonation velocity (at which the equilibrium or burnt zone
flow is sonic relative to the shock front) is used. From figure 1, two distinct regions
can be clearly recognized after the shock front: a induction zone and a reaction
zone. In the induction zone where the ‘incubation’ process occurs, the reactants start
to dissociate into free radicals. The free radicals then participate in the exothermic
recombination process when the chemical energy is released and temperature increases.
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Figure 1. Steady ZND detonation profiles for a mixture with Q = 8.33, γ = 1.2, EI = 37.5,
EB = 10 and TI = 3Tshock . (a) Pressure profile; (b) temperature profile.
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Figure 2. Steady ZND detonation profiles for a mixture with Q = 8.33, γ = 1.2, EI = 37.5, EB = 10
and TI = 3Tshock . (a) Mass fraction of fuel (solid line) and radical (dashed line); (b) mass fraction
of product.

It is also demonstrated that the chain-branching cross-over temperature TB controls
the ratio of the induction length to the recombination length (Short & Quirk 1997). In
figures 1(a) and 1(b), TB varies from 0.85Tshock to 0.95Tshock while the other parameters
are held constant. By increasing parameter TB , the induction zone length increases
relative to the recombination zone. This is shown more clearly if we look at the
profiles for the consumption of reactant as well as the formation of product.

Figure 2(a, b) shows the mass fraction of fuel, radical and product profiles in the
reaction zone behind the shock front. For a low value of TB = 0.85Tshock , the chain-
branching induction zone length is small and a significant buildup of chain radical
concentration occurs rapidly. Since the chain-branching cross-over temperature TB
is the temperature at which the chain-branching rate is equal to that of the chain
termination, we see that for a low value of TB , the chain-branching reaction rate is
significantly greater than that of the recombination reaction and a relatively longer
recombination region is obtained before the final equilibrium is reached. However,
for higher values of TB , the chain-branching induction zone increases, resulting in
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a lower peak concentration of chain radicals. For high values of TB , the rate of
chain-branching reaction is lower, thus allowing the chain-termination reaction to
become effective before all the reactants have been broken up into chain radicals.
Hence, this restricts the buildup in free radical concentration in the reaction zone.

From the steady ZND analysis, we can see that the present three-step model allows
us to vary the ratio between the induction zone length and reaction zone length
independently (as described previously by Short & Quirk 1997). This is one of the
distinct advantages over the standard one-step Arrhenius rate model. In fact, it is
difficult to define an induction zone length in the one-step Arrhenius rate model
where both induction and reaction length are governed only by a global activation
energy.

3.2. Unsteady detonation structure

It is well known that a steady ZND solution may be unstable and the response of
the steady-state solution to small perturbations can be obtained via a linear stabil-
ity analysis such as those carried out by Erpenbeck (1964), Lee & Stewart (1990),
Bourlioux et al. (1991), Sharpe (1997) or Short & Dold (1996), for example. Alter-
natively, the stability of a steady-state solution can be studied through an unsteady
calculation from initial conditions, where the transient behaviour of the detonation is
considered. Unsteady numerical simulations of one-dimensional detonations subject
to the present three-step chemical kinetic model have already been performed by
Short & Quirk (1997) to study the nonlinear stability of the structure of overdriven
detonation waves. However, they have only considered the specific problem of over-
driven detonations with overdrive factor f = 1.2. The stability analyses of idealized
unsupported CJ detonations, to the best of the authors’ knowledge, have not been
performed previously with this three-step chemical kinetic model. In addition, Short
& Quirk (1997) first assumed a steady ZND structure, and then subjected this stable
solution to a perturbation. However, it has also not been established that the steady
ZND profile of an unsupported CJ detonation with the present three-step chemical
kinetic model can in fact be reached from an initial transient development. Hence,
it is important to examine if the steady CJ detonation using the present three-step
chemical kinetic description can indeed be formed from arbitrary initial conditions
and also to describe its instability with the chosen combustible mixture parameters
before actually focusing on the problem of direct initiation of detonation. An unsteady
analysis of the transient development of a one-dimensional detonation initiated by
a strong blast wave is thus carried out to determine the existence of the steady CJ
detonation wave and its instability subject to the present three-step chemical kinetic
model. Details of the initial conditions will be given later on when we discuss the
direct initiation phenomenon.

The unsteady one-dimensional reactive Euler equations with the present chemical
kinetic scheme are solved numerically using a detonation code based on the piecewise
parabolic method (PPM) of Colella & Woodward (1984), which is a higher-order
extension of a Godunov-type method, together with a conservative shock-front track-
ing algorithm (Chern & Collela 1987). Due to the small length scale of the present
problem, it is important to properly refine the reaction zone. Therefore, an adap-
tive mesh refinement is used within the reaction zone (Berger & Collela 1989). This
combination of numerical methods follows Bourlioux’s (1991) approach. The compu-
tation domain is initially covered by a uniform coarse grid of 20 numerical cells per
half-reaction zone length. An extra fine grid, with a refinement ratio of 5, giving an
effective resolution of 100 cells per steady ZND half-reaction zone length (i.e. where
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Cross-over temperature TB Ratio δ

0.86Tshock 0.891
0.90Tshock 1.123
0.92Tshock 1.240
0.93Tshock 1.328
0.945Tshock 1.429
0.95Tshock 1.468

Table 1. The ratio δ for different chain-branching cross-over temperature TB obtained with
Q = 8.33 and γ = 1.2, EI = 37.5, EB = 10 and TI = 3Tshock .

half the chemical energy of the reaction has been released) is used within the reaction
zone of the detonation. This high resolution ensures that each reaction step is well
resolved (more than 20 cells were present within the zone of each reaction step).
All computations are performed with a CFL number of 0.5. Validation and further
details on the numerical methods used here can be found in the paper by Bourlioux
et al. (1991). The present numerical code itself was initially developed by Mazaheri
(1997) and extended to a three-step reaction mechanism for the present study.

In previous studies using a single-step Arrhenius rate law, the stability of the
detonation wave is usually characterized by the global activation energy of the rate
law. As the activation energy increases beyond the value for the stability limit, the
detonation front changes from small harmonic oscillations to nonlinear pulsations
and eventually to highly irregular behaviour when the activation energy is far from
the stability limit value (He & Lee 1995). Similar phenomena are also observed when
the degree of overdrive is reduced for a given unstable value of activation energy
(Bourlioux et al. 1991). The activation energy is a parameter in the single-step rate
law that can control the ratio between the induction- and reaction-zone lengths, i.e.

δ =
∆Induction

∆Reaction
. (3.3)

To understand more clearly the nonlinear pulsating instability of the detonation,
we should emphasize the importance of the ratio δ. To obtain it, the values of the
induction-zone and reaction-zone length are defined from the heat-release curve as
shown in figure 3. The black dot corresponds to the maximum of the heat release rate
or the inflection point of the curve (see Borisov, Zamanskii & Lisyanskii 1987). The
induction-zone length represents the extent of the thermally neutral portion in the
total length of chemical reaction and the reaction-zone length approximately estimates
the distance for the major part of the reaction heat to be released, or equivalently the
explosion time.

For the three-step chemical kinetic model, the ratio between the induction-zone
and reaction-zone lengths can be changed by varying the chain-branching cross-over
temperature TB , as discussed in § 3.1. Table 1 shows the corresponding value of the
ratio δ for different chain-branching cross-over temperatures TB .

3.2.1. Stable detonation with δ < 1

Figure 4 shows the leading shock pressure versus the distance travelled by the
shock front with the value of the chain-branching cross-over temperature TB equal to
0.86Tshock in the three-step chemical kinetic model. From the steady ZND structure,
we know that for TB = 0.86Tshock , the induction-zone length is short compared to the
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Figure 4. Leading shock pressure versus position for a stable detonation wave with
TB = 0.86Tshock for the three-step chemical kinetic model.

recombination- or reaction-zone length. In this case, the ratio δ is found to be 0.891.
At early time, a small-amplitude oscillation is observed due to the unsteady initiation
process. However, after a period of time, the oscillation is damped out and the
detonation wave eventually approaches to a stable steady-state solution. Comparison
between the detonation profiles obtained from the steady ZND calculation and a
transient calculation is shown in figure 5(a, b), showing good agreement. Here, we
can see that for small ratio δ (less than 1), the steady detonation wave is stable to a
small perturbation and a steady ZND solution can be achieved from arbitrary initial
conditions after the long-time evolution.

3.2.2. Unstable detonation with δ ≈ 1

By increasing the chain-branching cross-over temperature TB to 0.92Tshock , thereby
increasing the chain-branching induction length relative to the length of the recom-
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Figure 6. Leading shock pressure versus position for an unstable detonation wave (a single-mode
oscillation) with TB = 0.92Tshock for the three-step chemical kinetic model.

bination region and giving a value of δ greater than 1, an unstable detonation
wave is obtained from the blast wave decay, as shown in figure 6. Hence for high
values of TB , a stable detonation cannot be achieved from a transient calculation.
For TB = 0.92Tshock , the oscillation demonstrates a regular oscillatory behaviour with
constant period. This phenomenon is generally referred to as a pulsating detonation
and it is found in the present computation that this instability starts to occur when
the ratio δ is close to unity (with TB ∼ 0.90Tshock). A longer induction-zone length
compared to the reaction length therefore renders the system unstable. The instability
mechanism underlying the steady constant-period pulsation is thought to be due to
the periodic low-frequency, finite-amplitude compression and expansion waves in the
chain-branching induction zone between the main reaction region of the reaction
zone and the leading shock (Short et al. 1999).

Further increase in the chain-branching cross-over temperature TB for the three-
step kinetic model causes the oscillation to become less regular. The ratio δ eventually
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Figure 7. Leading shock pressure versus position for an unstable detonation wave
(a period-doubling bifurcation) with TB = 0.93Tshock for the three-step chemical kinetic model.

becomes much larger than 1. For TB = 0.93Tshock , a bifurcation occurs. The instability
of the detonation front migrates from a regular single-mode oscillation to a steady
period-doubled oscillation after some transient development, as illustrated in figure 7.
It consists of a high-amplitude oscillation followed by a smaller-amplitude oscillation.

3.2.3. Highly unstable detonation with δ > 1

For a very large value of TB , a very long chain-branching induction zone occurs
which can significantly affect the propagation of detonation waves. A highly non-
steady behaviour with a number of oscillations of different amplitudes and periods is
observed, as shown in figure 8. The shock pressure fluctuation varies between 0.7 and
2.0PZND . This result shows that no steady solution can be obtained. The oscillation
is irregular and is often called a multi-mode pulsating detonation. In this case, the
instability mechanism is more complex because a secondary detonation is formed
behind the leading detonation shock and thus results to a shock–shock interaction.
This accounts for the observation of the highly irregular behaviour.

3.2.4. Detonability limit for δ � 1

If the chain-branching cross-over temperature TB continues to increase further,
then at some critical value of TB (i.e. TB = 0.95Tshock giving a ratio δ = 1.468), the
detonation wave fails. This phenomenon is shown in figure 9. For sufficiently large
TB , the reaction zone (where the chemical energy is released) is at a distance far away
from the shock front. With a large-amplitude fluctuation, the shock temperature will
drop below the chain-branching cross-over temperature TB . The rate constant for
the chain-branching reaction then becomes very small and has a profound effect on
the rate of radical production behind the shock. The chain-branching reaction is
eventually ‘switched off’ and overridden by the chain-termination reaction. Therefore,
decoupling between the detonation shock and reaction zone occurs. The energy
released from the reaction zone cannot sustain the detonation wave and, hence, the
detonation wave quenches.

From the numerical results using a single-step chemical kinetic model, He & Lee
(1995) found that the dynamic quenching phenomenon due to instability occurs only
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Figure 8. Leading shock pressure versus position for an unstable detonation wave
(a multi-mode oscillation) with TB = 0.945Tshock for the three-step chemical kinetic model.

1.6

1.4

1.2

1.0

0 200 400 800

Distance

S
ho

ck
 p

re
ss

ur
e,

 P
/P

Z
N

D

0.8

600 1000
0.2

0.6

0.4

Figure 9. Quenching of detonation wave: detonability limit with TB = 0.95Tshock for the three-step
chemical kinetic model.

at a very high value of activation energy. They mentioned that there exists a dynamic
limit of activation energy for which the detonation cannot propagate via the auto-
ignition mechanism. However, Sharpe & Falle (1999) recently found that even at a
high value of activation energy for the one-step Arrhenius rate law, the detonation
wave still propagates as a series of explosions if one uses a very refined numerical grid
for the computation. Therefore, for single-step chemistry, there is no clear definition
for this detonation limit. Unlike a detonation wave using a one-step Arrhenius
chemical reaction, a clearer criterion for the failure can now be established using the
present three-step kinetic model. From a purely chemical kinetic consideration, Short
& Quirk (1997) in their paper state that: ‘If the detonation shock temperature drops
to the chain-branching cross-over temperature TB , the detonability limit occurs’.

This criterion is significant and will be applied later to the problem of direct initia-
tion of detonation. Similar to Short & Quirk’s (1997) results, the present simulations
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also demonstrate that the pulsating behaviour found for the three-step reaction model
is similar to the pulsating detonation instabilities found for the standard one-step re-
action model observed in previous investigations (Fickett & Wood 1966; He & Lee
1995, for example). However, the chemical switch-off mechanism in this multi-step re-
action model that causes the quenching to occur is not present for one-step Arrhenius
reaction kinetics.

It is suggested that the ratio between the induction-zone and reaction-zone lengths is
the main parameter (independent of the rate process) which characterizes the stability
of detonation waves. The significance of these two length scales for the detonation
stability has been discussed by Short & Quirk (1997) and also experimentally observed
by Borisov et al. (1987). In the present study, we also observe qualitatively that if
the value δ is much smaller than 1, where the reaction-zone length is always larger
than the induction-zone length, the detonation wave is stable. When the value δ
approaches one, the detonation starts to become weakly unstable. This implies that as
soon as the induction stage of the reaction becomes dominant, the wave is unstable
to perturbations and a regular oscillation of the detonation front can be observed.
If this ratio is much larger than 1, the shock front oscillates in a highly irregular
manner with different amplitudes and eventually the detonation limit occurs due to
the large fluctuation of the detonation front.

Since this ratio offers a reasonable explanation of some important features of
detonations, in the following section this ratio will be used to characterize the
mixture, for simplicity.

4. Direct initiation of detonation
After having examined the detonation structure and its associated instability in the

previous section, the phenomenon of direct initiation of detonation is now investigated
for planar, cylindrical and spherical geometries with the three-step chemical kinetic
model. We shall adopt the ideal strong blast wave model as initial conditions, the
same approach as in most of the previous studies (Mazaheri 1997; Eckett et al.
2000). For ideal strong blast waves, the initial conditions are given by the similarity
solution of Taylor (1950) and Sedov (1959). The subsequent decay of the blast, when
chemical reaction comes into play, must be described by the numerical integration of
the reactive Euler equations with the appropriate chemical rate law. For a perfect gas
with constant specific heat ratio γ, the similarity solution of the point blast model
consistent with earlier normalization is given by

us =
2

γ + 1
Ms, ps =

2

γ + 1
M2

s , ρs =
γ + 1

γ − 1
,

u

us
= f

(
r

Rs

)
,

ρ

ρs
= g

(
r

Rs

)
,

p

ps
= h

(
r

Rs

)
,

 (4.1)

where subscript s refers to the conditions immediately after the shock. Ms and Rs
denote the shock Mach number and shock radius respectively. The spatial distribution
of flow variables behind the blast wave, i.e. velocity u, density ρ and pressure p, can
be obtained by solving the functions f(r/Rs), g(r/Rs) and h(r/Rs), which are listed in
the book by Korobeinikov (1991). Likewise, the similarity solution for non-reacting
strong blast waves also gives the following relationship between the strength of the
shock Ms, the shock radius Rs and the non-dimensional source energy Es, respectively
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Figure 10. Leading shock pressure versus position for the subcritical regime of planar initiation
obtained with Q = 8.33, γ = 1.2, δ = 0.604 and non-dimensional initiation energy Es = 350. (The
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per unit area, per unit length, or just the energy itself for the three geometries:

Es =
Ẽs

p̃or̃
j+1
c

= αj

(
j + 3

2

)2

γM2
s R

j+1
s , (4.2)

where αj is the energy integral constant (α1 = 2.257, α2 = 2.026, α3 = 1.739 obtained
from the correlations given by Korobeinikov 1991), which is a function of the adiabatic
exponent γ. Also, p̃o is the dimensional initial pressure of the mixture and j is the
geometric index, i.e. j = 0, 1, 2 for the planar, cylindrical and spherical geometries,
respectively. Knowing the initial shock strength and location, the initiation source
energy can be determined from this relationship.

4.1. The three regimes of direct initiation

From the experimental investigation of direct initiation of spherical detonation by
Bach, Knystautus & Lee (1969), we know that the initiation process can be classified
into three regimes, i.e. subcritical, supercritical and critical, according to whether
the ignition source energy is less than, greater than, or equal to a threshold value
corresponding to the critical energy. The three regimes of direct initiation are first
simulated for planar geometry and their mechanism is discussed in this section. A
mixture that corresponds to a hydro-dynamically stable detonation (with δ less than 1)
is first investigated.

4.1.1. The subcritical regime

Upon the sudden deposition of a large amount of energy in a gaseous combustible
mixture, a strong blast wave is formed. During the early times of the blast wave
propagation, the shock pressure decreases rapidly as for a strong non-reactive blast
wave since the blast energy dominates the decay process. As the blast decays to larger
distances, the chemical heat release starts to influence the blast wave propagation (at
about Ms < 1.5MCJ). If the source energy is far below the critical value, the chemical
reaction zone fails to couple to the shock front and the blast continues to decay
to the sonic speed. This initiation phenomenon is referred to the subcritical regime
of initiation where the source energy is below the critical value. Figure 10 shows
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Figure 11. Temperature profiles at different times for the subcritical regime of planar initiation
obtained with Q = 8.33, γ = 1.2, δ = 0.604 and non-dimensional initiation energy Es = 350.

the leading shock pressure versus position for the subcritical regime of initiation,
together with that of a non-reactive blast wave for comparison. In this case, the non-
dimensional planar initiation energy Es is equal to 350. As the blast wave continues
to decay, the combustion front will recede further from the shock front. The shock
progressively decays to sonic velocities, similar to non-reactive blast wave propagation,
while the combustion zone propagates as a slow deflagration wave.

The decoupling between the reaction front and the leading shock can be clearly
observed from the temperature profiles. Figure 11 shows the temperature profiles at
different times during the blast decay. In the subcritical regime, two sharp temperature
rises can be seen in the profiles. The first abrupt rise in the temperature is due to
the shock compression. A short plateau follows where the temperature remains
almost constant. This distance corresponds to the induction zone length, i.e. the
region where the ‘incubation’ process takes place and the reactants start to dissociate
into free radicals. After the induction period, the chemical energy release starts
because the recombination process of radicals is exothermic. Thus, a second rise
in temperature occurs due to the rapid chemical heat release. This second jump
in temperature is defined as the reaction front. In the early times of blast wave
propagation, the induction zone is extremely short (almost not perceptible) due to the
high temperatures. Thus, the two fronts are coupled and cannot be distinguished from
each other. However, as the blast decays to weaker strength, the shock temperature
is lower and the induction time increases. The shock and the reaction fronts start to
decouple as the induction length increases.

The reason for the decoupling phenomenon can be explained by looking at the
profiles of the mass fraction of fuel and radical (see figure 12). Early in the decay of
the blast, the chain-branching induction zone is small and there is still a significant
buildup of chain radical concentration at the combustion front. As the blast expands
further, the rate of the chain-branching reaction decreases, resulting in a lower peak
concentration of the chain radicals. Once the temperature drops below the chain-
branching cross-over temperature TB , the chain-branching reaction step is essentially
‘switched off’ and eventually no further radical buildup can be observed in the reaction
zone. This leads to a significant increase in the induction-zone length and results in a
complete decoupling of the combustion front and the leading shock.
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Figure 12. Detonation structure profiles showing the mass fraction of fuel (solid lines) and radical
(dashed lines) for the subcritical regime of planar initiation obtained with Q = 8.33, γ = 1.2,
δ = 0.604 and non-dimensional initiation energy Es = 350. The arrows indicate the leading shock
front.

4.1.2. The supercritical regime

If the blast wave generated by the source is of sufficient duration, rapid auto-
ignition takes place behind the blast wave and the chemical reaction zone is then
intimately coupled with the shock. The blast wave decays continuously toward a
self-sustained CJ detonation. The detonation front will continue to propagate steadily
at the CJ velocity thereafter. This corresponds to the so-called supercritical regime of
initiation. For the supercritical case, the amount of initiation energy is much larger
than the critical value and the flow field simply consists of a blast wave continuously
decaying to the CJ velocity of the mixture. The supercritical regime is illustrated in
figure 13 which shows the shock front pressure in terms of the distance travelled by
the shock for the supercritical regime of initiation. This simulation is performed with
a non-dimensional planar initiation energy Es = 658.

Figure 14 shows the temperature profiles for the supercritical regime of initiation.
From this figure, we note that the temperature rise due to the heat release by com-
bustion almost coincides with the temperature rise due to shock front compression.
This indicates that the combustion front is intimately coupled to the shock front
throughout. From the mass fraction of fuel and radical profiles (see figure 15), we
also note that there is always a significant amount of chain radicals in the reaction
front.

4.1.3. The critical regime

If the initiation energy is near the critical value, the phenomenon is more complex
as illustrated in figure 16. Here, the non-dimensional source energy for the planar
initiation has a value of 362. When the initiation energy is near the critical value, the
shock front and the reaction front first decouple as the blast expands. The reaction
front recedes from the leading shock. However, unlike the subcritical case, where
the reaction zone continually recedes from the shock, the decoupling in the critical
case stops after the blast wave has decayed to a certain shock velocity. Thereafter
both the shock and the reaction front propagate together as a quasi-steady complex
at a Mach number near the auto-ignition limit of the mixture. This is referred to
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Figure 13. Leading shock pressure versus position for the supercritical regime of planar initiation
obtained with Q = 8.33, γ = 1.2, δ = 0.604 and non-dimensional initiation energy Es = 658.
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Figure 14. Temperature profiles at different times for the supercritical regime of planar initiation
obtained with Q = 8.33, γ = 1.2, δ = 0.604 and non-dimensional initiation energy Es = 658.

as the quasi-steady period and this quasi-steady period terminates when the shock
front abruptly re-accelerates to form an overdriven detonation wave. The overdriven
wave eventually decays to a self-sustained detonation wave. If the initiation energy
is smaller than this critical value, the decoupling will continue and the shock will
eventually decay to an acoustic wave (Ms = 1) and no detonation is initiated, as in
the subcritical case.

Figure 17 shows the temperature profiles at different times for the critical regime of
initiation. During the early blast decay, the distance between the reaction and shock
fronts progressively increases as they decouple from each other. Near the end of
the quasi-steady period, the distance between these two fronts decreases again and the
shock begins to accelerate and finally the two fronts become completely coupled. The
shock temperature corresponds closely to the chain-branching cross-over temperature
TB in the quasi-steady regime. The same phenomena can be observed in figure 18
showing the mass fraction of reactant and radical during the initiation process.
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Figure 15. Detonation structure profiles showing the mass fraction of fuel (solid lines) and radical
(dashed lines) for the supercritical regime of initiation obtained with Q = 8.33, γ = 1.2, δ = 0.604
and non-dimensional initiation energy Es = 658. The arrows indicate the leading shock front.
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Figure 16. Leading shock pressure versus position for the critical regime of planar initiation
obtained with Q = 8.33, γ = 1.2, δ = 0.604 and non-dimensional initiation energy Es = 362.

To understand the re-acceleration process before the onset of detonation, some
observations can be made from the analysis of the pressure profiles. Figure 19 shows
the pressure profiles for the critical regime of initiation. Early in the decay, the shock
pressure and the pressure gradient at the shock are decreasing as the shock moves
forward. A pressure pulse begins to develop in the region between the reaction front
and the leading shock. As the reaction–shock complex moves, this pressure pulse starts
to amplify. This pressure pulse eventually becomes the maximum pressure in the flow
field. The distance between the reaction front and the peak pressure decreases as
the structure moves. As the strength of the pressure pulse increases, the shock front
accelerates because the high-pressure region begins to drive the shock front. The
leading shock and the reaction front eventually merge together to form an overdriven
detonation and subsequently relax to the CJ detonation. This initiation process
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Figure 17. Temperature profiles at different times for the critical regime of planar initiation
obtained with Q = 8.33, γ = 1.2, δ = 0.604 and non-dimensional initiation energy Es = 362.

has also been observed in previous numerical simulations of detonation initiation
(Mazaheri 1997; Eckett et al. 2000). Although not addressing direct blast initiation
per se, a similar feature is also noticed by Clarke and co-workers (Clarke, Kassoy
& Riley 1986; Clarke et al. 1990) in their investigation of the detonation initiation
problem using other means of initiation, i.e. by a heated layer of gas and piston-driven
shock. The mutual interaction of the pressure pulse and the chemical heat release
results in the rapid amplification of the pressure pulse and the onset of a detonation.
This is the essence of the mechanism of shock wave amplification by coherent energy
release (SWACER), proposed by Lee (see Lee & Moen 1980). This process of rapid
shock amplification at the end of the quasi-steady period can be explained by the
fact that the chemical energy release in the reaction front is synchronized with the
propagation of the pressure pulse within the reaction–shock complex.

The results from simulations clearly demonstrate that it is the re-acceleration of
the wave after an initial decoupling of the reaction front from the blast which is
responsible for the initiation in the critical regime. Therefore, all existing initiation
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Figure 18. Detonation structure profiles showing the mass fraction of fuel (solid lines) and radical
(dashed lines) for the critical regime of planar initiation obtained with Q = 8.33, γ = 1.2, δ = 0.604
and non-dimensional initiation energy Es = 362. The arrows indicate the leading shock front.

theories based on a failure criterion due to curvature (He & Clavin 1994) or quenching
due to unsteadiness (Eckett et al. 2000) of the decaying blast wave may not be
sufficient to fully describe the direct initiation phenomenon. These initiation theories
only consider the first phase of the initiation process where a critical condition is being
prepared from the blast wave decay for the second phase of rapid shock amplification.
These models can be adequate for predictive purposes, but lack the ability to describe
the complete initiation process. Therefore, a better criterion should take into account
the mechanism of the amplification process at the end of quasi-steady period. Effective
shock wave amplification depends on whether or not a reacting flow-field maintains
the SWACER mechanism for a sufficiently long duration and the chemistry should
play a significant role in this process. Hence, it is important to use a multi-step
chemical kinetic model to study the direct initiation since various parameters, such as
the induction time gradient, reactivity of gas mixture, etc, should govern the SWACER
mechanism.
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Figure 19. Pressure profiles at different times for the critical regime of planar initiation obtained
with Q = 8.33, γ = 1.2, δ = 0.604 and non-dimensional initiation energy Es = 362.

4.2. The effect of instability on the initiation

The initiation process for stable detonation was studied in the previous section.
Similar calculations are presented here for unstable mixtures (with δ greater than 1).
As mentioned in § 3.1, if the induction length is increased relative to the recombination-
zone length, the detonation wave becomes unstable. We have introduced the ratio δ as
the main parameter controlling the stability of one-dimensional pulsating detonations.
An interesting question that arises is whether the instability of the detonation plays
a role in the initiation process.

For comparison, figure 20 and figure 21 show the pressure of the shock front versus
position for stable and highly unstable detonations of planar geometry, respectively.
For the stable case with δ = 0.604, the initiation process can be well described
by the decay of the blast wave. The blast wave decays to a sub-CJ value and
re-accelerates back to the CJ detonation after the quasi-steady period. Therefore,
the critical initiation energy can be well approximated from the blast wave theory.
The numerical result shows that some new phenomena appear for highly unstable
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Figure 20. Leading shock pressure versus position for the direct initiation of a stable detonation
obtained with Q = 8.33, γ = 1.2, δ = 0.604 and different non-dimensional initiation energies:
Es1 = 350, Es2 = 362 and Es3 = 746.
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Figure 21. Leading shock pressure versus position for the direct initiation of a highly unstable planar
detonation obtained with Q = 8.33, γ = 1.2, δ = 1.429 and different non-dimensional initiation
energies: Es1 = 1195, Es2 = 1371 and Es3 = 1445.

detonation (δ = 1.429), where the final self-sustained detonation propagates with an
irregular behaviour. Instead of the blast decaying continuously to the sub-CJ value,
oscillation occurs during the initiation process. The detonation instability clearly
influences the initiation process. For curve 1, the source energy is far from the critical
value. The reaction front and the shock are decoupled throughout. The blast wave
continues to decay to an acoustic wave. Curve 2 demonstrates how instability of the
detonation front may induce some failure of the detonation. After the first oscillation
of the shock pressure, it is possible that some unsteady event from the rear boundary
of the reaction zone dominates the wave propagation and causes the quenching of
the detonation wave. Therefore, a larger amount of initiation energy is expected to
overcome all these instability effects of the detonation. The mechanism behind this
initiation process for highly unstable detonation is beyond the scope of this work.
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From these results we can see that the detonation instability is also important for
the initiation process. So far, this instability effect has not been explicitly considered
in any of the current initiation models. These models are mostly based on the blast
wave theory and do not include a stability parameter in their formulations.

4.3. Other geometries

What we have considered so far is the initiation for planar detonation. For the planar
case, the detonation wave is not subject to any curvature effect and only unsteadiness
of the flow behind the shock causes the decay of the wave. For cylindrical and
spherical detonations, curvature will be a factor in addition to unsteadiness and we
shall investigate these combined effects on the initiation process. Curvature of a
shock front induces an additional expansion of the gas behind it, and this additional
expansion causes cooling and can lead to quenching of the chemical reactions. When
a fluid particle crosses a curved shock wave, it is first compressed by the shock
and its temperature is increased. Subsequently, the compressed fluid particle expands
volumetrically due to the radial, outward flow behind the shock and this expansion
will then result in a decrease in the temperature. The expansion of the fluid particle
can cause failure of the detonation if the decrease in temperature is sufficiently rapid
to quench the chemical reactions. To illustrate the curvature effect, consider the critical
tube diameter phenomenon. When a detonation emerges abruptly from a confined
tube into an open space, the planar detonation diffracts into a curved front. The
wave fails if the curvature is excessive. Hence the tube diameter must be above some
critical value so that the wave curvature does not lead to failure.

In the initiation of cylindrical and spherical detonations, the curvature decreases
as the blast expands. However during the initiation process, both curvature and
unsteadiness can cause failure of the diverging wave. Figure 22(a, b) shows the shock
front pressure versus position for the three regimes of initiation for cylindrical and
spherical geometries. Since curvature can cause additional quenching, initiation of
cylindrical detonation requires that the same critical strength of blast occurs at a
larger radius than the planar geometry. Similarly, spherical detonation has even
larger curvature at the same radius. Hence, the same critical value of the strength of
the blast must be maintained to even larger radius than the cylindrical geometry in
order for successful initiation to be achieved.

The three regimes of initiation for stable detonation are qualitatively similar for all
three geometries. The only difference is that for the planar geometry a self-sustained
detonation is formed closer to the source. Another interesting result is that the
detonation velocity is found to be slightly lower than the planar ZND solution. Since
the curvature term is proportional to j/r in the conservation equations (j = 1, 2 for
cylindrical and spherical geometries, respectively), then the velocity is always unsteady
and only reaches the CJ value if the radius approaches infinity.

Another interesting phenomenon for diverging detonation waves is that curvature
enhances the instability. Figure 23 shows the numerical results of unstable cylindrical
detonation with a ratio δ = 0.891. Although this value of δ corresponds to a stable
case for planar detonation (see § 3.2), in the case of cylindrical detonation, instability
occurs when the radius of the front is small. For the curved detonation front,
the particle undergoes an expansion behind the shock due to the curvature effect.
This expansion due to curvature increases the induction time and hence enhances
the instability of the detonation wave. This is even more significant for spherical
detonation because of the higher curvature. In this case, the wave will only become
stable at the long time limit when the radius approaches infinity.
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Figure 22. Three regimes of direct initiation obtained with Q = 8.33, γ = 1.2, δ = 0.604. (a)
Cylindrical geometry with non-dimensional initiation energies: Es1 = 1.08×105, Es2 = 1.14×105 and

Es3 = 1.40× 105; (b) spherical geometry with non-dimensional initiation energies: Es1 = 6.06× 107,

Es2 = 6.37× 107 and Es3 = 1.56× 108.

4.4. The critical initiation energy

Previous numerical studies on direct initiation of detonation using a single-step
Arrhenius rate law failed to yield a clear value of the critical initiation energy
(Mazaheri 1997). This contradicts experimental observations where a distinct value
for the critical initiation energy is obtained. To illustrate the problem of using a
single-step reaction rate law, the initiation processes of planar detonation for different
initiation energies are plotted in figure 24. Note that if one waits long enough, then
even curve 7 will eventually result in detonation initiation. Of course the time one
has to wait increases exponentially, but no sharp cut-off can be obtained with a
single-step model to permit an definitve value of the critical energy to be determined.

However if a more detailed chemical kinetic model is used, the difficulty in iden-
tifying the critical energy can be eliminated. A single-step rate model also does
not provide a detonability limit. However, using a three-step reaction model, Short



Direct initiation of detonation with a multi-step reaction scheme 203

0 100 200 300 400

Distance

1.4

1.0

0.8

0.6

S
ho

ck
 p

re
ss

ur
e,

 P
/P

Z
N

D 1.2

500 600

1 2

3

4

Figure 23. Direct initiation of unstable cylindrical detonation for Q = 8.33, γ = 1.2, δ = 0.891
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Figure 24. Leading shock pressure versus position for direct initiation using one-step kinetic rate
law for Q = 41.667, γ = 1.2 and Ea = 20 for different initiation energies: Es1 = 3243, Es2 = 3285,
Es3 = 3302, Es4 = 3361, Es5 = 3420, Es6 = 3601 and Es7 = 3724.

& Quirk (1997) succeeded in obtaining a criterion for this limit, i.e. onset of the
detonability limit occurs when the shock temperature drops to the chain-branching
cross-over temperature. For the direct initiation of detonation, a well-defined value of
the critical energy can also be obtained if the blast wave generated by the source en-
ergy never drops below the chain-branching cross-over temperature TB . If the energy
is insufficient and the blast drops below the chain-branching cross-over temperature
TB , then the chain-branching reaction is effectively being switched off. Since the
chain-branching induction length is now much longer than the recombination-zone
length, the rate of heat release is significantly reduced. In this case, the combustion
front will no longer be able to couple with the leading shock and form a self-sustained
detonation. From a purely chemical kinetic consideration, the following criterion for
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defining the critical initiation energy can be obtained: For successful initiation, the
blast wave generated by the source must not drop below the chain-branching cross-over
temperature before the onset of detonation occurs.

Once the temperature drops below this limit, no initiation of detonation is possible.
Thus, we see that the use of a three-step chain-branching reaction scheme has an
advantage over the standard one-step Arrhenius kinetic model for the problem of
direct initiation in that it can provide a ‘cut-off’ temperature and this leads to the
possibility of obtaining a more well-defined value for the critical initiation energy.

5. General theories for direct initiation
In the past two decades, several theories have been developed to estimate the critical

initiation energy for direct initiation of detonation from a point source. Because there
is no clear definition for what value of the critical energy should be chosen when a
single-step Arrhenius rate law is used, these theories for direct initiation cannot be
verified numerically from previous studies. Hence, it appears worthwhile to examine
the validity of these theories from the results of the present numerical simulations,
where a different reaction mechanism is used.

5.1. Dependence of critical energy on induction length

A criterion for direct initiation was first proposed by Zel’dovich et al. (1957). For
successful initiation, they stated that the blast radius should be on the order of
the induction-zone thickness by the time the shock strength has decayed to the CJ
value. From this argument, they demonstrated that the critical energy for direct
initiation of spherical detonation must be proportional to the cube of the induction
zone thickness, i.e. ∼ ∆3

ind. Later, Lee (1977) extended the Zel’dovich et al.’s initiation

criterion to other geometries in the form of ∼ ∆j+1
ind , where j = 0, 1, 2 for planar,

cylindrical and spherical geometries, respectively. In the past forty years, most of the
initiation models have involved almost the same correlation between a characteristic
chemical length and the critical initiation energy as described by Zel’dovich et al.’s
model. Since Zel’dovich et al.’s criterion forms the base of many of these initiation
models, it appears worthwhile to examine its validity for different geometries from the
results of the present numerical simulations using a more detailed chemical kinetic
model, where the critical energy can be clearly defined.

The critical initiation energies for different geometries calculated by numerical
simulations are plotted versus the induction-zone length of the steady ZND detonation
in figure 25. The corresponding induction-zone length for the detonability limit (above
which no detonation can be formed) is also indicated in this figure. It is shown that
the critical initiation energy correlates well with the induction zone length as predicted
by Zel’dovich et al.’s theory. The linear, quadratic and cubic correlations (shown by
the dashed lines in figure 25) between the critical initiation energy and the ZND
induction-zone length for planar, cylindrical and spherical cases appear to be valid,
especially for the case of a short induction zone, where the detonation is stable. For a
long induction zone where the detonation is unstable, other effects such as curvature
and non-steady expansion begin to influence the initiation process and the critical
energy departs from the simple blast wave scaling law on which Zel’dovich et al.’s
theory is based. For all three geometries, it is observed that there is a small deviation
from Zel’dovich et al.’s criterion for a long induction zone. As mentioned previously,
Zel’dovich et al.’s criterion simply relates the critical initiation energy with a chemical
length scale, which does not include the effect of unsteadiness. Therefore, it is not
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Figure 25. Variation of critical initiation energy with ZND induction-zone length for (a) planar
j = 0, (b) cylindrical j = 1 and (c) spherical j = 2 geometries. The dashed lines show the correlation

curve ∼ ∆j+1
ind for each geometry.

appropriate to simply use the induction-zone length for the very unsteady events in
the initiation process. Furthermore, this deviation is more significant in cylindrical
and spherical geometries because curvature appears to enhance the instability of the
wave. Nevertheless, Zel’dovich et al.’s theory provides a means to estimate the correct
order of magnitude of the critical initiation energy.

5.2. Invariance of the critical explosion length Ro

For direct initiation of detonation for different geometries, Lee (1977) has suggested
that for a given combustible mixture, the critical explosion length R̃o is invariant with
geometry and is defined as

R̃o =

(
Ẽspherical

p̃o

)1/3

=

(
Ẽcylindrical

p̃o

)1/2

=

(
Ẽplanar

p̃o

)
. (5.1)

Consistent with the earlier normalization the explosion length is also normalized here
by the reference length scale defined earlier (i.e. Ro = R̃o/r̃c). The explosion length Ro
represents a characteristic length of the source energy specific to the geometry and
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Figure 26. Invariance of explosion length Ro for blast initiation for different geometries.

is the only length scale associated with strong blast decay. Recently, the explosion
length concept has been verified experimentally by Radulescu, Higgins & Lee (2000).
From the results of numerical simulations using the present three-step chemical model
for different geometries, it is also possible to verify numerically the critical explosion
length scaling law proposed by Lee (1977). To do this, the critical explosion lengths
for direct initiation in planar, cylindrical and spherical detonations are plotted in
figure 26. From this figure, it appears that the explosion length is essentially invariant
for all the three geometries for the same mixture parameters, especially for those
results corresponded to a stable detonation. Again, there is a small deviation for
a long induction zone. As mentioned previously, this is due to the fact that the
detonation becomes highly unstable for a long induction zone and the instability has
a significant effect on the initiation process.

The invariance of the critical explosion length with geometry is quite useful in
practice because we can predict the critical initiation energy for different geometries
if it is known for one geometry. For example with the critical value of the explosion
length known, then the critical initiation energy, energy per unit length and energy
per unit area for the three basic geometries could be determined, i.e.

Ro =
Espherical

Ecylindrical
=
Ecylindrical

Eplanar
. (5.2)

Since the critical initiation energy is linked to the chemical length scale ∆ind of
the detonation, i.e. ∼ ∆

j+1
ind. , and from the explosion length invariance principle for

different geometries, we could expect that the critical explosion length should also
scale with the chemical length of the detonation, i.e. Ro ∼ ∆ind. In the present numerical
study, the explosion length Ro under critical conditions is found to be of the order
of Ro ∼ 864∆ind. Using the standard correlation between the cell size and induction
length ∆ind of the form λ ∼ 30∆ind (Westbrook & Urtiew 1982), the explosion length
Ro under critical conditions can be roughly correlated with the cell size. In the present
study, we obtain Ro of the order of ∼ 29λ, which is close to some experimental results,
i.e. Ro varies from 17λ to 24λ for typical hydrocarbon–air mixtures found by Benedick
et al. (1985) and Ro ∼ 33λ in the recent study by Radulescu et al. (2000).
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Figure 27. Definition of critical radius R∗s from the results of numerical simulations.

5.3. Critical kernel radius R∗s for direct initiation

The detonation kernel theory of Lee & Ramamurthi (1976) states that there exists
a critical size of detonation kernel for direct initiation. The size of the detonation
kernel corresponds to the shock radius R∗s at which the shock wave has decayed
to some critical Mach number M∗

s before it re-accelerates back to a CJ detonation.
The appropriate choice of critical Mach number M∗

s should reflect the critical shock
strength below which any detonation would fail. The shock strength prior to the onset
of detonation, during the so-called quasi-steady period, appears to be an appropriate
value for the critical Mach number M∗

s . Experimentally, the shock strength during
the quasi-steady period is observed to be close to half the CJ detonation speed. The
half-CJ value is generally accepted for the critical Mach number M∗

s and is used
in many initiation models (Lee 1977). However, this half-CJ value is only a general
estimate from experimental observations and may be incorrect for different explosive
mixtures. The present study suggests that the choice of critical Mach number should
take into account the chemistry. In the previous section, it is shown that if the blast
wave generated by an initial point source drops below the chain-branching cross-
over temperature TB , initiation of detonation fails. Therefore, the shock temperature
during the quasi-steady period should be close to this chain-branching cross-over
temperature TB . Hence, the shock strength to this temperature limit should be a more
suitable choice of the critical Mach number M∗

s , which corresponds to the shock
strength very near the auto-ignition limit of a combustible mixture. Depending on the
value of the chain-branching cross-over temperature TB , the critical Mach number
ranges from 0.5MCJ to 0.9MCJ .

In the numerical results, the critical radius R∗s is defined as the radius before the re-
acceleration of the shock to detonation at the critical condition, as shown in figure 27.
The approximate values of critical radius R∗s from the present numerical simulations
for different mixtures are given in table 2. Conventionally, the critical kernel R∗s at
which the onset of detonation occurs is usually correlated to the cell size of the
mixture, which is the most important dynamic parameter of gaseous detonation.
Estimates of the critical kernel radius for initiation vary widely in the literature.
Table 3 shows some experimental results of critical radius for each geometry for
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Induction length ∆ind R∗planar/∆I R∗cylindrical/∆I R∗spherical/∆I

0.353 90.74 269.39 411.18
0.431 88.11 255.05 417.36
0.517 81.21 212.70 386.73
0.619 74.31 206.80 355.43
0.737 70.59 190.04 352.93
0.870 68.94 201.07 344.69
1.021 68.54 215.42 —
1.194 67.01 — —
1.390 66.20 — —
1.443 67.22 — —

Table 2. Results of critical radius R∗s for direct initiation of detonation obtained from the present
numerical simulations.

R∗s
Spherical ≈ 10− 13λ (Bull et al. 1978)
Cylindrical ≈ 4− 8λ (Radulescu et al. 2000)
Planar less than 3λ (Benedick 1979)

Table 3. Results of critical radius R∗s for direct initiation obtained from some experiments.

typical hydrocarbon combustible mixtures. For qualitative comparison, the standard
correlation between the cell size and induction length ∆ind of the form λ ∼ 30∆ind
is used once again. Using this correlation, we obtain approximately the values of
critical radius from the results of the present numerical simulations in term of cell
size, i.e. R∗planar ∼ 2λ, R∗cylindrical ∼ 7λ and R∗spherical ∼ 12λ. These are in accordance with
the experimental results shown in table 3.

6. Conclusion
The problem of direct initiation of detonation using a multi-step chemical kinetic

model has been investigated here. The three-step chemical kinetic scheme used for
this study represents the simplest mechanism capable of reproducing some essential
features of a chain-branching reaction. Due to the different mechanism of a chain-
branching chemical reaction compared to a one-step global reaction, some qualitative
differences between these two chemical kinetic models can be observed for the initi-
ation and propagation of the detonation. This study demonstrates that using a more
detailed chemical kinetic model could eliminate some of the difficulties in a one-step
Arrhenius chemical approximation and it was able to more accurately reproduce
the qualitative aspects of the direct initiation of detonation. The multi-step chemical
kinetic scheme can provide a chemical switch-off mechanism that causes detonation
failure to occur, which cannot be described by the one-step Arrhenius reaction model.
This permits a more clear value for the critical initiation energy to be determined.
From the point of view of chemical kinetics, a criterion for defining a critical initi-
ation energy can also be obtained, based on the blast wave generated by the source
not decaying below the chain-branching cross-over temperature before the onset of
detonation occurs. Below this temperature limit, chain-branching reactions become
ineffective, resulting in a sudden decrease in the global reaction rate and causing a
quenching of energy release and a failure to initiate.
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Due to the difficulty in determining a well-defined value of the critical energy
when a single-step Arrhenius rate law is used, most of the existing theories on direct
initiation cannot be verified numerically. In the present study where a three-step
chemistry model that describes branched-chain processes is used and a clear cut-
off value of critical energy can be reasonably approximated, some of these theories
have been verified. The numerical results show that the detonation instability plays
an important role in the initiation process. For a highly unstable mixture, results
deviate from those obtained by previous theories for direct initiation. Since most
of these existing initiation models are based on the blast wave theory, they do
not include a parameter to model the detonation instability. This study suggests
that the ratio δ between the induction- and reaction-zone length may be a useful
parameter to include in the formulation of a theory for direct initiation to take
into account the effect of detonation instability. Regardless of the chemical reaction
mechanism, this ratio δ is shown to control the detonation propagation. In addition,
it is thought to govern the mechanism of the amplification process for initiation
near the critical regime. For this reason, a multi-step chemical kinetic model is
certainly required to investigate in more detail the effect of this ratio δ because
it allows the independent variation of the induction and reaction length scales,
which cannot be achieved by a single-step Arrhenius chemical kinetics. This will
permit us in the future to perform a parametric study of these two length scales
numerically and contribute to the development of a more rigorous theory for direct
initiation.

In conclusion, this paper suggests that a multi-step chemical kinetic model, for
example similar to the one employed in the present study, should be considered for a
more comprehensive study of the direct initiation of detonation.

The authors are grateful to Dr Kiumars Mazaheri and Dr Randy Chue for
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comments made by the referees. H. D. Ng is supported by a Natural Science and
Engineering Research Council of Canada (NSERC) scholarship.
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